Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Nutrition Research and Practice ; : 378-386, 2018.
Article in English | WPRIM | ID: wpr-717727

ABSTRACT

BACKGROUND/OBJECTIVES: Benign prostatic hypertrophy (BPH) is a major cause of abnormal overgrowth of the prostate mainly in the elderly. Corni Fructus has been reported to be effective in the prevention and treatment of various diseases because of its strong antioxidant effect, but its efficacy against BPH is not yet known. This study was designed to evaluate the therapeutic efficacy of Corni Fructus water extract (CF) in testosterone-induced BPH rats. MATERIALS/METHODS: To induce BPH, rats were intraperitoneal injected with testosterone propionate (TP). Rats in the treatment group were orally administered with CF with TP injection, and finasteride, which is a selective inhibitor of 5α-reductase type 2, was used as a positive control. RESULTS: Our results showed that the increased prostate weight and histopathological changes in BPH model rats were suppressed by CF treatment. CF, similar to the finasteride-treated group, decreased the levels of testosterone and dihydrotestosterone by TP treatment in the serum, and it also reduced 5α-reductase expression and concentration in prostate tissue and serum, respectively. In addition, CF significantly blocked the expression of the androgen receptor (AR), AR co-activators, and proliferating cell nuclear antigen in BPH rats, and this blocking was associated with a decrease in prostate-specific antigen levels in serum and prostate tissue. CONCLUSIONS: These results suggest that CF may weaken the BPH status through the inactivation of at least 5α-reductase and AR activity and may be useful for the clinical treatment of BPH.


Subject(s)
Aged , Animals , Humans , Rats , Antioxidants , Cornus , Dihydrotestosterone , Finasteride , Proliferating Cell Nuclear Antigen , Prostate , Prostate-Specific Antigen , Prostatic Hyperplasia , Receptors, Androgen , Testosterone , Testosterone Propionate , Water
2.
Nutrition Research and Practice ; : 129-134, 2018.
Article in English | WPRIM | ID: wpr-713828

ABSTRACT

BACKGROUND/OBJECTIVES: Although several recent studies have reported the anti-cancer effects of extracts or components of Citrus unshiu peel, which has been used for various purposes in traditional medicine, the molecular mechanisms for their effects remain unclear. In the present study, the anti-cancer activity of a water-soluble extract of C. unshiu peel (WECU) in MDA-MB-231 human breast carcinoma cells at the level of apoptosis induction was investigated. MATERIALS/METHODS: Cytotoxicity was evaluated using the MTT assay. Apoptosis was detected using DAPI staining and flow cytometry analyses. Mitochondrial membrane potential, reactive oxygen species (ROS) assay, caspase activity and Western blotting were used to confirm the basis of apoptosis. RESULTS: The results indicated that WECU-induced apoptosis was related to the activation of caspase-8, and -9, representative initiator caspases of extrinsic and intrinsic apoptosis pathways, respectively, and caspase-3 accompanied by proteolytic degradation of poly(ADP-ribose) polymerase and down-regulation of the inhibitors of apoptosis protein family members. WECU also increased the pro-apoptotic BAX to anti-apoptotic BCL-2 ratio, loss of mitochondrial membrane potential and cytochrome c release from mitochondria to cytoplasm. Furthermore, WECU provoked the generation of ROS, but the reduction of cell viability and induction of apoptosis by WECU were prevented when ROS production was blocked by antioxidant N-acetyl cysteine. CONCLUSIONS: These results suggest that WECU suppressed proliferation of MDA-MB-231 cells by activating extrinsic and intrinsic apoptosis pathways in a ROS-dependent manner.


Subject(s)
Humans , Apoptosis , Blotting, Western , Breast Neoplasms , Breast , Caspase 3 , Caspase 8 , Caspases, Initiator , Cell Survival , Citrus , Cysteine , Cytochromes c , Cytoplasm , Down-Regulation , Flow Cytometry , Medicine, Traditional , Membrane Potential, Mitochondrial , Mitochondria , Oxygen , Poly(ADP-ribose) Polymerases , Reactive Oxygen Species , Water
SELECTION OF CITATIONS
SEARCH DETAIL